![]() |
In our last discussion on the six keys to an identity assurance strategy, we talked about anomaly detection. In that blog, we discussed recognizing normal and abnormal behavior. Recognizing this behavior, and adapting to changes in that behavior, is where the topic of this blog starts as our next key component of an identity assurance strategy is machine learning. When we apply machine learning to behavioral recognition, it adapts in response to how an individual, or group of people behave in their application access. The result is higher confidence in a user’s identity while reducing interruptions required to provide additional interactive authentication. This is really powerful, because you are improving both the end user experience and your overall security posture. Big Data Machine Learning Machine Learning for Smaller Populations
Much of the data used here is either the same or similar data we discussed in the first blog post in this series on business context. The difference is in how it is applied. Instead of evaluating static rules, we look at those attributes to learn what is normal for each user. Instead of declaring a network address is trusted or not trusted, for example, we analyze the user activity and determine if they’ve provided a high level of authentication from an IP address multiple times. This insight provides one piece of data to consider when determining confidence in the user’s identity. Pair that with many other data points, creating high confidence across multiple attributes, and you can make an intelligent determination as to whether more authentication is needed for the access request or not. Don’t Forget to Forget Putting It All Together When creating an identity assurance strategy, make sure machine learning has a strong presence. No matter how complex you get with your business context static rules, they cannot match the capabilities of a strategy that includes machine learning. This is an area of rapid growth and when you’re looking for identity and access management partners, you will want to know they have a strategy to keep up with this rapidly changing space. While you can gain a lot of insight by choosing a multi-factor authentication solution that has machine learning capabilities, you can really expand system intelligence when you start to look at external systems for input into this engine. We’ll explore this broader ecosystem in our next blog. For now, learn more about RSA SecurID® Access and how we are leveraging identity assurance into the authentication process in this on-demand webinar. The post Six Keys to Successful Identity Assurance – Machine Learning appeared first on Speaking of Security - The RSA Blog. |
