![]() |
This blog is written in collaboration with the witting and insightful Matt Maccaux and his leading edge work around our elastic data platform and data lake. “Our organization is abuzz with the concept of data lakes!” a customer recently told me. And rightfully so, as the data lake holds the potential to help organizations become more effective at leveraging data and analytics to power their business models. That’s exactly what we propose when we talk about the Big Data Business Model Maturity Index, and helping organizations to exploit the power of predictive, prescriptive, and cognitive (self-learning) analytics to advance up the business model maturity index (see Figure 1). ![]() Figure 1: Big Data Business Model Maturity Index
But thinking about the data lake as only a technology play is where organizations go wrong. And in fact, thinking of the data lake as only a data repository (something akin to your data warehouse) can create a chasm that hinders the organization’s ability to leverage data and analytics for business value, which hinders an organization’s ability to “monetize” its data by optimizing key operational processes, mitigating compliance and security risks, uncovering new revenue opportunities, and creating a more compelling customer engagement. From our customer experiences with respect to building out their data lakes, we’d like to share our Data Lake Business Model Maturity Index. This Data Lake Business Model Maturity Index not only shows you where you are today with respect to leveraging your data lake to drive monetization opportunities, but also provides a roadmap for getting from where you are today to where you need to be tomorrow. Data Lake 1.0: Getting Familiar with the TechnologyData Lake 1.0 is where organizations are standing up and getting familiar with big data technologies such as Hadoop, HDFS, Hive and HBase. Generally, the goal with these early data lakes was to offload as much data as possible to lower the overall cost of performing analytics. However, organizations are making some big mistakes as they build out their Data Lake 1.0; creating “anti-patterns” or “worst practices” that will ultimately hinder their ability to create a scalable, elastic data platform.
Consequently, Data Lake 1.0 looks like a pure technology stack because that’s all it is (see Figure 2). ![]() Figure 2: Data Lake 1.0: Storage, Compute, Hadoop and Data
Data Lake 2.0: Creating an Elastic Data PlatformData Lake 2.0 focuses on building an elastic data platform heavy on scalable technologies and data management services focused on business use cases that deliver financial value and business relevance (see Figure 3).
This Elastic Data Platform addresses the anti-patterns encountered during Data Lake 1.0.
The key to an Elastic Data Platform is for IT to build templates of common tools (i.e. Spark + Jupyter Notebooks) that allow users to self-provision those templates and add additional tools as they see fit. Additionally, allowing users to self-provision data will further speed the time to insights. The most effective way to do this is through virtualized or containerized deployments of big data environments. By virtualizing the tools and automating the deployment of those deployments, then these environments can be spun up, on the fly, and then taken down when the user is done with their work. This makes the environment “elastic” due to the scale-up and scale-down. Additionally, through the power of virtualization or containerization, if anything happens in one user’s environment, it is isolated from the other users so they are unaffected (see Figure 4).
Data Lake 3.0: Collaborative Value Creation PlatformData Lake 3.0 is where organizations are fully embracing the unique characteristics of data and analytics as digital assets – assets that never wear out, never deplete and can be re-used across an infinite number use cases at near zero marginal cost. Data Lake 3.0 is about creating the “collaborative value creation platform” that captures, re-uses and refines the organizations data and analytic assets and drives “monetization” efforts in close collaboration between the business, IT and the data science organizations (see Figure 5).
Our ground breaking research with the University of San Francisco on determining the economic value of data (“Applying Economic Concepts To Big Data To Determine The Financial Value Of The Organization’s Data And Analytics Research Paper”) proposed a methodology for calculating the economic value of an organization’s data. Instead of using traditional but retrospective accounting principals, we developed a methodology based upon economic concepts (e.g., multiplier effect, scarcity) and data science techniques. In particular, the research paper explored the following questions with respect to how an organization maximizes the economic and financial value of the organization’s data and analytics:
Ultimately, the research paper provided a framework to facilitate the capture, refinement and sharing of the organization’s data and analytic assets, and a methodology to help organizations prioritize where to invest their precious data and analytic resources. And Data Lake 3.0 – the organization’s collaborative value creation platform – was born (see Figure 6). ![]() Figure 6: Data Lake 3.0: The Collaborative Value Creation Platform
For more information about our leading edge work around the economic value of data (EVD), check out Determining Economic Predicted Value of Data (EPvD) Series. Data Lake Business Model Maturity IndexData is only of limited value until one applies analytics (such as deep learning, machine learning, reinforcement learning and artificial intelligence) to uncover customer, product, service, operational and market insights. And those insights are only of value if they are being used to help organizations to optimize key operational processes, mitigate compliance and security risks, uncover new revenue opportunities, and creating a more compelling customer engagement (see Figure 7). ![]() Figure 7: Data Lake Business Model Maturity Index
Data Lake 3.0 is the organization’s data and analytics monetization platform, but organizations need to push aggressively up the Data Lake Business Model Maturity Index if they hope to derive compelling and meaningful business value out of their data lake. Otherwise it’s just another technology exercise resulting in business user frustration and missed expectations. The post Data Lake Business Model Maturity Index appeared first on InFocus Blog | Dell EMC Services. |
