![]() |
Quick quiz! What’s the first thing that comes to mind when you hear the following phrases?
These phrases probably evoke thoughts such as “fake,” “not real,” or even “shabby.” Artificial is such a harsh adjective. The word “artificial” is defined as “imitation; simulated; sham” with synonyms such as fake, false, mock, counterfeit, bogus, phony and factitious. The word “artificial” may not be the right term to use to describe “Artificial Intelligence,” because “artificial intelligence” is anything but fake, false, phony, or a sham. Maybe a better term is “Augmented Human Intelligence,” or a phrase that highlights both the importance of augmenting the human’s intelligence as well as to alleviate the fears that AI means humans become “meat popsicles” (quick, name that Bruce Willis movie reference!). And while I don’t expect this name change to stick (if it does, please give me some credit), I’m using this blog as an excuse to introduce some marvelous new training materials on artificial intelligence and machine learning. But before I dive into details, let’s first frame the artificial intelligence conversation. Focusing on the “How” Won’t Lead You to the “What” and “Why”Organizations have access to a growing variety of internal and external data sources that might yield better predictors of business performance. And while having a process to ideate, validate and prioritize the different data sources that one might want to explore for its predictive capabilities, in the end the data by itself is of little value – organizations need to become more effective at leveraging data and analytics to power their business models (see Figure 1). ![]() Figure 1: Big Data Business Model Maturity Index
But in order to “monetize” that growing bounty of data, you’re going to need to become an expert at advanced analytics to tease out the customer, product, service, and operational insights that are the real sources of economic value (see University of San Francisco “Determining The Economic Value of Data” research paper). Business leaders need to become knowledgeable about advanced analytics capabilities so that they can envision “What” business use cases to target and “Why,” before they get pulled into the “How” discussion. Preparing for the “How” DiscussionTo help business leaders understand where and how to apply the different classes of advanced analytics (i.e., machine learning, neural networks, reinforcement learning, artificial intelligence), I’ve created an advanced analytics roadmap. I then mapped the advanced analytics roadmap against the Big Data Business Model Maturity Index (see Figure 2). ![]() Figure 2: The Path for Creating the Intelligent Enterprise
While certainly not perfect (and certainly not definitive given continued advanced analytics advancements), Figure 2 attempts to classify the different advanced analytics capabilities into a roadmap that organizations can use to help them understand when and where to apply the different advanced analytics capabilities. This is my attempt to try to summarize the advanced analytics confusion, hype and excitement into something actionable. With that as my goal, here are the different levels of advanced analytics:
It is important to be able to summarize and present the wide realm of advanced analytics within a frame that we can explain to business leadership (because eventually we’re going to come to them for money). So using Figure 2 as our business framework, let’s deep dive into each of the advanced analytics levels. Level 1: Insights and ForesightsThe goal of Level 1 is to quantify “cause-and-effect” (i.e., quantify relationships in the data) and predict what is likely to happen at some measureable level of confidence. Level 1 sets the foundation for determining “goodness of fit,” or the extent to which observed data matches the values predicted by analytic models. Level 1 includes the following advanced analytic capabilities:
Level 2: Augmented Human Decision-makingLevel 2 builds upon the predictions created in Level 1 in order to prescribe actions and recommendations. Level 2 is the domain of analytic capabilities focused on natural language processing (NLP), text translation, voice recognition, and photo/image/facial recognition. Advanced analytic capabilities in level 2 focus on learning and then making inferences from that learning. Level 2 includes the following analytic capabilities:
![]() Figure 3: Why Convolutional Neural Networks (Source URL provided below)
But beware, as there is not just one neural network technique, as can be seen in Figure 4. ![]() Figure 4: The Asimov Institute, The Neural Network Zoo (Source URL provided below)
Machine Learning empowers systems and applications with the ability to gain knowledge without being explicitly programmed. Machine learning focuses on the development of computer programs that can change when exposed to new data. Machine Learning algorithms identify patterns in observed data, build models that explain the world, and predict things without having to explicitly pre-program rules and analytic models (see Figure 5). ![]() Figure 5: The Difference Between Deep Learning Training and Inference (Source URL provided below) Fundamentally, Machine Learning does two things: 1) quantifies relationships in the data (quantify relationships from historical data and apply those relationships to new data sets), and 2) quantifies latent relationships (draw inferences) buried in the data. There are two types of machine learning:
See the blog “Top 10 Machine Learning Algorithms” for detailed list of machine learning algorithms.
See the article “Ensemble Learning to Improve Machine Learning Results” for more details on ensemble machine learning. Level 3: The Learning and Intelligent EnterpriseLevel 3 focuses on creating an intelligent enterprise that can self-monitor, self-diagnose, self-correct and self-learn. Level 3 is the domain of continuous “learning and adjusting” advanced analytic techniques such as reinforcement learning, artificial intelligence and cognitive computing. Level 3 includes the following analytic capabilities:
See “Transforming from Autonomous to Smart: Reinforcement Learning Basics” for more details on reinforcement learning.
Artificial intelligence involves the study of agents that perceive the world around them, form plans, and make decisions to achieve their goals. An intelligent agent is an autonomous entity that observes through sensors and acts upon an environment using actuators (i.e. it is an agent) and directs its activity towards achieving goals (i.e. it is “rational,” as defined in economics). There are 4 general types of intelligent agents:
![]() Figure 6: Simple Reflect Agent (Source URL provided below)
Cognitive Computing is a relatively new concept that is being championed by IBM Watson. Cognitive computing involves self-learning systems that simulate human thought processes and decision-making in complex situations. From Wikipedia, we get cognitive systems features including:
SummaryYou can’t get to the “What” and the “Why” by focusing on the “How” It is also important to understand the “How” in order to envision the “What” and “Why.” Sometimes the wide variety of advanced analytic techniques and algorithms cause confusion, and cause business leaders to slow down or even stop until they understand these advanced analytic capabilities better. The goal of this blog was to provide enough of an explanation of advanced analytics to business leaders so that when we get engaged in an envisioning exercise, we get turn off the governors that limit creative thinking. Appendix: Marvelous Sources of Advanced Analytics KnowledgeThere are many sources of excellent education available on advanced analytics, such as Andrew Ng’s deep learning classes on Coursera. One of my favorites is the content provided by the “Machine Learning for Humans” site. It has excellent material and includes a free downloadable e-book. ![]() Figure 7: Machine learning is one of many subfields of artificial intelligence, concerning the ways that computers learn from experience to improve their ability to think, plan, decide, and act. I’ll continue to share new sources of great educational material on advanced analytics as they get released into the wilds. Understand the “how” will help organizations to envision the realm of what’s possible. Many times, that envisioning is only limited by the organizations creativity and management commitment. Sources: Figure 3: Why Convolutional Neural Networks Figure 4: The Asimov Institute – The Neural Network Zoo Figure 5: Nvidia – What’s the Difference Between Deep Learning Training and Inference? [4] The technological singularity is the hypothesis that the invention of artificial super intelligence will abruptly trigger runaway technological growth, resulting in unfathomable changes to human civilization (a.k.a. Skynet). Figure 6: Philosophy of Artificial Intelligence: Simple Reflex Agent The post Artificial Intelligence is not “Fake” Intelligence appeared first on InFocus Blog | Dell EMC Services. |
